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a b s t r a c t

Helix-reinforced structures are found in a variety of natural materials, from the helical architecture of the
narwhal tusk to the Bouligand structures in the exoskeletons of crustaceans. Drawing inspiration from
these natural structures, a novel materials processing method, known as magnetic freeze casting, is used
to fabricate helix-reinforced hybrid composites. The ZrO2–epoxy composites investigated here exhibit
enhanced torsional properties due their helical architectural organization. In torsion, the maximum ten-
sile and compressive stresses induced by a state of pure shear are oriented at ±45� to the axis of rotation.
As a result, the composites with helix-reinforcement oriented parallel to the direction of maximum com-
pressive stress (at �45�) exhibit the highest shear moduli. Bioinspired, hybrid composites with helix-
reinforced structures may be useful for a variety of engineering applications, from the cylindrical shafts
in combustion engines to golf clubs and bone implants.

� 2014 Elsevier Ltd. All rights reserved.
1. Introduction

Helices are found in a variety of natural structures [1], such as
the stems of woody plants [2], the skeletons of silica sponges [3],
and the tusks of narwhals [4]. These naturally occurring structures
grow in response to external stresses and provide reinforcement
against induced torsion. Similarly, the double-helix structure of
DNA governs its torsional rigidity, an important property that
determines its superhelix, tertiary structure [5]. Unlike spirals that
have a continuously increasing radius of curvature, such as those
commonly found in mollusk shells [6,7] and the horns and antlers
of many ruminant mammals [8], helices have a constant radius of
curvature and propagate along a central axis [1]. The growth, mor-
phology, and mechanical advantage of spirals and helices observed
in natural structures have fascinated scientists for decades [1,9].
Skalak et al. [10] and Harary and Tal [11] developed mathematical
models to describe, respectively, the surface growth and morphol-
ogy of several biological ultrastructures, such seashells, horns, and
antlers. At the microstructural level, another form of the helix pres-
ent in many natural materials is the twisted-plywood or Bouligand
structure [12]. This helicoidal structure has been observed in the
exoskeletons of crustaceans [13–15] and the scales of fish
[16,17]. Recently, it was reported that the twisted nature of the
fibrous layers in these materials is mechanically advantageous,
enhancing their impact resistance and fracture toughness [15,17].

In modern architectural design, both spirals and helices appear
in a variety of synthetic structures, primarily for their natural
beauty. However, the helix is also an efficient mechanical design
that provides an optimal distribution of stresses in structures sub-
jected to torsional loading (e.g., torsion springs) [18]. Drawing
inspiration from this natural design principle, engineering materi-
als that are subjected to external torques may benefit from similar
helix-reinforced architectures. Few attempts to utilize the helix for
enhanced torsional rigidity in synthetic materials have been
reported. Apichattrabrut and Ravi-Chandar [19] and Cheng et al.
[20] fabricated helicoidal fiber-reinforced composites that exhib-
ited improved damage tolerance in response to tension, bending,
and impact. However, the torsional rigidity of the composites
was not investigated [19,20]. Several patents [21–25] on helical
reinforced materials have been filed as well. However, to the best
of our knowledge, only the torsion transmitting glass shaft
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invented by Rodgers and Howald [25] utilizes helix-reinforced
architectures to improve the torsional rigidity of cylindrical shafts.

Recently, Porter et al. [26] invented a novel materials processing
method, known as magnetic freeze casting, to fabricate ceramic
scaffolds with helical architectures. This technique expands on
conventional freeze casting – a popular method in which a colloi-
dal suspension, typically composed of ceramic particles and water,
is directionally frozen, then sublimated to remove the frozen sol-
vent, and sintered to partially densify and strengthen the porous
constructs [27,28]. During solidification, the particles are pushed
between and trapped within growing ice crystals, leading to lamel-
lar pore channels that are direct replicas of the frozen solvent
[27,28]. Subsequently, the porous ceramics can be infiltrated with
polymers or metals [29–32], yielding hybrid composites with hier-
archical architectures that mimic the natural features of bone (e.g.,
osteons) or abalone nacre (e.g., brick-and-mortar structures).
Although many freeze cast materials exhibit high strength and
toughness [29,32], these properties are generally limited to a single
direction - parallel to the direction of ice growth.

Magnetic freeze casting uses magnetic fields to manipulate
magnetic nanoparticles (i.e., Fe3O4) during solidification. This pro-
cess steers ceramic particles in the direction of the magnetic flux
path. Previously, this method was shown to enhance the compres-
sive strength and stiffness of ceramic scaffolds perpendicular to the
direction of ice growth, parallel to an applied magnetic field [26].
The enhanced compressive properties obtained are due to the
microstructural alignment of lamellar walls in two perpendicular
directions: (1) the ice growth direction and (2) the magnetic field
direction. In the same study [26], several cylindrical scaffolds with
helical architectures were fabricated by rotating magnetic fields
about the solidification direction. These scaffolds exhibited bipha-
sic material properties. A circumferential helix composed of a
higher-density, Fe3O4-rich phase surrounded an interior lower-
density, Fe3O4-poor phase. The helix was composed of dense
lamellar walls aligned parallel to the direction of the prevailing
magnetic field. It was proposed that this helical architecture may
act as a reinforcing structure, enhancing the torsional rigidity or
shear modulus of the material [26,28].

We show herein, both experimentally and analytically, that
these helical architectures enhance the torsional rigidity of mag-
netic freeze cast composites. To do this, it is necessary to compare
the shear modulus of composites having identical material compo-
sitions, with and without helical architectures. Although several
shear test methods currently exist [33,34], the solid-rod torsion
test was selected for this work [35]. Previous investigations show
that the torsion test is best suited to induce a state of pure shear
stress in cylindrical composite samples [35,36]. The method pre-
dicts both the shear strength and stiffness of a material from a sin-
gle test [35,36]. In addition, torsion testing minimizes local
material and stress concentration effects as well as unwanted
bending moments due to slight misalignments of the samples
[35,36]. Experimental measurements of the torsional rigidity (i.e.,
shear modulus) versus the angle of helix-reinforcement were com-
pared to determine an optimal angle of reinforcement.
2. Materials and methods

2.1. Magnetic freeze casting

Helix-reinforced composite samples were prepared using a
custom built freeze cast unit and rotating permanent magnet as
previously described [26]. Aqueous slurries of 10 vol.% or 20 vol.%
ZrO2 powders (Sigma Aldrich, St. Louis, MO), with an average diam-
eter of 0.2–0.5 lm, were mixed with 3 wt% (of the total solids)
Fe3O4 nanoparticles (Sigma Aldrich, St. Louis, MO), with an average
diameter of�50 nm, and 1 wt% of each: organic binders, polyethyl-
ene glycol (PEG) (Alfa Aesar, Ward Hill, MA) and polyvinyl alcohol
(PVA) (Alfa Aesar, Ward Hill, MA), and an ammonium polymethac-
rylate anionic dispersant, Darvan� 811 (R.T. Vanderbilt Company,
Inc., Norwalk, CT). The slurries were ball milled in an alumina grind-
ing medium for 24 h, followed by degassing under low vacuum for
10–20 min. Approximately 3 mL of the degassed slurries were
poured into a polyethylene mold with a 9 mm inner diameter and
frozen at a constant rate of 10 �C/min. During solidification, a
magnetic field of 0.12 T was rotated about the ice growth direction
(Z-axis) at 0.05 rpm, 0.20 rpm, or 0.40 rpm, resulting in the helix-
reinforced architectures. After freezing, the samples were removed
from the mold and lyophilized in a bench-top freeze dryer
(Labconco, Kansas City, MO) at�50 �C and 350 Pa for 72 h. The por-
ous green constructs were then sintered in an open air furnace for
3 h at 1300 �C with heating and cooling rates of ±2 �C/min.

Following the sintering process, the porous scaffolds were
infiltrated with epoxy (EpoxiCure Resin, Buehler, Lake Bluff, IL),
resulting in ceramic–polymer composites with varying volume
fractions and angles of helix-reinforcement. To infiltrate the
scaffolds, the two-part epoxy solution was first mixed thoroughly
for 2–3 min. Then, the porous scaffolds were immersed in the
liquid epoxy solution and subjected to a low vacuum for 30 min
to degas the solution and infiltrate the scaffolds. After complete
infiltration, the wet samples were removed from the liquid epoxy
and set at room temperature for 24 h, allowing the epoxy to harden
and cure. For clarity, even though the ceramic phase of all the com-
posites contains 3 wt.% Fe3O4, it is simply referred to as ZrO2

throughout this study.

2.2. Material characterization

Scanning electron microscopy (SEM) images were taken at
15 kV on a Philips XL30 field emission environmental scanning
electron microscope (FEI-XL30, FEI Company, Hillsboro, OR). For
SEM preparation the samples were sputter-coated with iridium
using an Emitech K575X sputter coater (Quorum Technologies
Ltd., West Sussex, UK).

The thicknesses and angles of helix-reinforcement and the
relative volume fractions of the ZrO2 and epoxy phases of the com-
posites were measured from optical images and scanning electron
micrographs using ImageJ software (National Institutes of Health,
Bethesda, MD). The helices were measured from optical images
using the segment and angle measurements tools. The relative
volume fractions were measured from the cross-sections of the
composites, where the thresholds of SEM images were adjusted
equally to measure the % area of each phase. Four different
locations across each cross-section were measured to determine
the distribution of densities caused by the rotating magnetic fields.

X-ray diffraction (XRD) was performed on a D2 Phaser X-ray
diffraction tool (Bruker AXS, Madison, WI). XRD experiments
confirmed that the crystal structure of the ZrO2 phase remained
monoclinic before and after sintering, while a small portion of
the Fe3O4 phase transformed from magnetite (Fe3O4) before
sintering to hematite (Fe2O3) after sintering at 1300 �C. No
apparent transformation due to interactions between the ZrO2

and Fe3O4 phases was observed.

2.3. Torsion testing

The torsional properties of the ZrO2–epoxy composites
with varying volume fractions and different angles of helix-
reinforcement were compared using the solid-rod torsion test.
The torsion tests were performed on a custom built torsion testing
device, capable of twisting the cylindrical composites to induce a
state of pure shear stress (see Appendix A).
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To test the samples in torsion, the cylindrical ZrO2–epoxy com-
posites were aligned and mounted in epoxy ‘‘grips’’ using a custom
built mounting device. All the composite samples were fabricated
such that the regions of interest have a circular cross-section of
radius rs (�7.5 mm) and length Ls (�25 mm). The epoxy grips of
the samples have square cross-sections 25 mm � 25 mm with
lengths of Lg (�25 mm), fitting neatly into the square mounts of
the torsion tester. Refer to Appendix A for a complete description
of the torsion testing setup and calibration.

Using an empirically derived calibration constant (C = 8.82 �
10�4) and the measured shear modulus of the epoxy grips
(Gg = 1.0 GPa), the ultimate shear stress and shear strain at the
surface of the ZrO2–epoxy composites were plotted from the
experimental data (refer to Appendix A). For simplicity, microme-
chanics describing the complex nature of the freeze-cast micro-
structures and the helix-reinforcements were ignored. Instead,
the ZrO2–epoxy composites were modeled as orthotropic, elastic
materials with unidirectional-reinforcement, similar to that
reported by Adams and Thomas [35] and Hamed et al. [37].
Because torsion testing a homogeneous cylinder generates stresses
and strains that vary linearly from the central axis of rotation to
the outer surface, the maximum shear stress and shear strain occur
on the surface of the cylindrical samples. Thus, their ratio, G (shear
modulus), is constant, and therefore, provides an accurate descrip-
tion of the torsional rigidity. These assumptions are necessary to
compare the effects of ceramic content and helix-reinforcement
in the cylindrical composites. Duplicates of each torsion test were
run to ensure repeatability.

3. Results and discussion

3.1. Architectural hierarchy

Fig. 1 shows the profiles and cross-sections of eight different
ZrO2–epoxy composites fabricated by magnetic freeze casting. As
seen in the figure, the two different solid loadings of ZrO2

(10 vol.% and 20 vol.% suspensions) used during the freeze casting
process resulted in two sets of composites with varying volume
fractions of ZrO2 and epoxy. For clarity, the two sets are referred
to as 40:60 and 60:40 composites corresponding to the ZrO2 and
epoxy contents, respectively. That is, the 40:60 composites contain
�40 vol.% ZrO2 and �60 vol.% epoxy, while the 60:40 composites
contain �60 vol.% ZrO2 and �40 vol.% epoxy (refer to Table 1).
The composites have four levels of structural hierarchy: (1) the
helix-reinforcement due to the rotating magnetic fields
(Fig. 2(a)–(c)); (2) the microstructural alignment due to freeze
casting (Fig. 2(d) and (e)); (3) the layered ZrO2–epoxy interface
due to polymer infiltration (Fig. 2(f)); (4) the ZrO2 grain struc-
ture after sintering and polymer infiltration (Fig. 2(f)).
Fig. 1. Representative images of the profiles and cross-sections of the ZrO2–epoxy com
speeds shown. (a) ZrO2–epoxy composites composed of �40 vol.% ZrO2 and �60 vol.% ep
The letters ‘‘A’’ and ‘‘B’’ shown on the cross-sections represent the Fe3O4-rich helix-reinfo
all the composites are �7.5 mm.
The distribution of the Fe3O4-rich (brown color) and Fe3O4-poor
(white color) phases in the cross-sections of the composites varies
considerably (see Fig. 1), while the volume fractions of the two
phases on the outer surface were approximately equal (VA =
VB = 0.5). Fig. 2(a)–(c) show magnified images of the 40:60 com-
posites illustrating the different angles of helix-reinforcement.
Increasing the rotation speed of the magnetic field increased the
angle, but decreased the thickness of the helices. That is, the
40:60 composites fabricated with a rotating magnetic field at
0.05 rpm had helices �4 mm thick oriented at an angle of 42�,
while those at 0.20 rpm were �1 mm thick at 73� and those at
0.40 rpm were �0.5 mm thick at 84�. Similar to that observed by
Porter et al. [26], the 40:60 composites showed a distinct separa-
tion of the two phases, resulting in biphasic material properties.
The Fe3O4 phases in the 60:40 composites, on the other hand, were
more homogeneously distributed. However, both sets of compos-
ites contain larger volume fractions of ZrO2 in the helical regions.
Thus, the helices are more dense and expected to reinforce the
structures. Table 1 contains the average volume fractions of ZrO2

in each composite as well as the distribution of ceramic content
in the helix-reinforced and non-reinforced regions (respectively
labeled as regions A and B, corresponding to Fig. 1). As seen from
the data in Table 1, the 40:60 composites contain �10–15 vol.%
more ZrO2 in the helix-reinforced regions (A) than the non-
reinforced regions (B), while the 60:40 composites contain only
�5–10 vol.% more ZrO2 in the helix-reinforced regions (A) than
non-reinforced regions (B).

Fig. 2(d)–(f) show representative SEM images of the ZrO2 scaf-
folds after infiltration with epoxy, showing the difference in micro-
structure and ceramic content in the Fe3O4-poor regions of the
40:60 composites (Fig. 2(d)) and 60:40 composites (Fig. 2(e)). Sim-
ilarly, the microstructures of the Fe3O4-rich regions resemble those
shown in Fig. 2(d) and (e), with slightly higher ceramic contents
and some degree of lamellar wall alignment as previously
described by Porter et al. [26]. Fig. 2(f) shows that the infiltrated
epoxy is well bonded to the ZrO2 scaffolds, completely filling the
open porosity. However, the epoxy did not fill any remaining
closed porosity existing in the interior of the lamellar walls after
sintering the ZrO2 scaffolds. These structural characteristics,
namely the helix-reinforcement angle and the relative volume
fractions of ZrO2, affect the torsional properties of the composites.

3.2. Torsional properties

Because the ZrO2–epoxy composites are reinforced by a single,
continuous helix oriented in a right-handed or clockwise (CW)
fashion (from the bottom up), the torsional properties of the com-
posites are significantly different depending on the direction of
applied torque and the angle of reinforcement. Similarly, the
posites freeze cast under a rotating magnetic field of 0.12 T at the varying rotation
oxy. (b) ZrO2–epoxy composites composed of �60 vol.% ZrO2 and �40 vol.% epoxy.
rced regions and Fe3O4-poor non-reinforced regions, respectively. The diameters of



Table 1
Material properties of the aluminum (Al 6061-T6), epoxy, and ZrO2–epoxy composites, showing the rotation speed of the magnetic field and the resulting helix angle, the average
ZrO2 volume fraction and the ZrO2 volume fractions of the helix-reinforced (A) and non-reinforced (B) regions corresponding to Fig. 1, the twist direction, and the mechanical
shear properties.

Sample type Rotation speed
(rpm)

Helix angle
(degrees)

ZrO2fraction (vol.%) Twist
direction

Shear strengthb

(MPa)
Shear modulusb

(GPa)
Averagea A B

Al 6061-T6 – – – – – CW 207 ± 6 26.0 ± 1.2
Epoxy – – – – – CW 48 ± 2 1.0 ± 0.1

ZrO2–epoxy composites
(40:60)

No field – 37 ± 4 – – CW 36 ± 0 2.5 ± 0.4
0.05 42 38 ± 10 47 29 CW 37 ± 2 3.1 ± 0.3
0.20 73 36 ± 5 41 32 CW 46 ± 7 2.8 ± 0.3
0.40 84 37 ± 6 42 32 CW 48 ± 1 2.6 ± 0.4

ZrO2–epoxy composites
(60:40)

No field – 58 ± 4 – – CW 30 ± 5 2.8 ± 0.8
0.05 42 59 ± 5 62 55 CW 51 ± 13 5.5 ± 0.7
0.20 73 57 ± 5 61 54 CW 46 ± 3 4.7 ± 0.7
0.40 84 59 ± 7 65 53 CW 54 ± 2 4.3 ± 0.5
0.05 42 63 ± 2 65 61 CCW 35 ± 10 2.8 ± 0.6

a Measurements recorded as average ± standard deviation (n = 4).
b Measurements recorded as average ± standard deviation for Al 6061-T6 (n = 6) and epoxy (n = 6), and average ± the range of duplicates for ZrO2–epoxy composites (n = 2).

M.M. Porter et al. / Composite Structures 119 (2015) 174–184 177
off-axis mechanical behavior of fiber-reinforced laminate compos-
ites are dependent on the direction of applied stress and the angle
of fiber reinforcement [38]. Therefore, it is convenient to analyze
the stress state at the outer surface of the helix-reinforced compos-
ites in an analogous fashion to that of a unidirectionally-reinforced
plate.

3.2.1. Direction of applied torque
Fig. 3 a compares three 60:40 composites: one with no helix-

reinforcement and two with identical helix-reinforcement angles
of 42� twisted CW and counterclockwise (CCW) (see Table 1 for
details). The helix-reinforced composite that was twisted in a
CCW fashion shows little to no improvement over the composite
without helix-reinforcement. However, when twisted in the CW
direction, the 42� helix provides a significant amount of reinforce-
ment, with nearly twice the effective shear modulus (refer to
Table 1).

This result is due to the fact that torsion testing induces a state
of pure shear stress in the cylindrical samples, as illustrated in
Fig. 3(b) and (c). Accordingly, the maximum compressive and
Fig. 2. Architectural hierarchy of the ZrO2–epoxy composites: (a–c) Representative
images of 40:60 composites, illustrating the angle of helix-reinforcement freeze
cast under a rotating magnetic field of 0.12 T at varying rotation speeds: (a)
0.05 rpm; (b) 0.20 rpm; (c) 0.40 rpm. (d–f) Representative SEM images of the
composites freeze cast under a rotating magnetic field of 0.12 T at 0.20 rpm:
(d)40:60 composites;(e)60:40 composites; (f) magnified image of the ZrO2–epoxy
interface. The light color is the ZrO2 phase and the dark color is the epoxy phase.
(d,e) The scale bars are 50 lm. (f) The scale bar is 1 lm.
tensile stresses occur on the surface of the cylindrical samples at
±45� (see Fig. 3(b) and (c)). For isotropic materials, the shear mod-
ulus (G) is proportional to the elastic modulus (E) and Poisson’s
ratio (m), according to Eq. (1):

G ¼ E
2ð1þ mÞ : ð1Þ

Hence, the composite shear modulus can be considered propor-
tional to its elastic modulus (G / E).

To verify the experimental results observed in Fig. 3(a), the
direction of applied torque was analyzed according to the schemat-
ics shown in Fig. 3(b)–(e), where a composite with an angle of
helix-reinforcement at 45� is twisted: (a) CW and (b) CCW. Assum-
ing the applied torque induces a state of pure shear and plane
stress at the surface of the cylindrical composites, the stress ele-
ments shown can be rotated 45� such that the maximum shear
stresses (smax) become maximum compressive and tensile stresses
(rC and rT, respectively), as illustrated in Fig. 3(b)–(e). Now, it
becomes convenient to apply the rule-of-mixtures to resolve the
compressive and tensile elastic moduli of the composites in direc-
tions parallel and perpendicular to the helix-reinforcement [38].
Because the composites are composed of two continuously inter-
penetrating networks of ZrO2 and epoxy, the compressive stiffness
(EC) is dominated by the elastic modulus of the ZrO2 phase, while
the tensile stiffness (ET) is dominated by the ZrO2–epoxy interfacial
adhesion (i.e., interfacial shear or tensile strengths). This suggests
that the compressive modulus is much greater than, and domi-
nates, the tensile modulus, such that EC� ET. Therefore, according
to the Voigt and Reuss models for unidirectionally-reinforced com-
posite materials [39], and neglecting the tensile moduli, the com-
pressive moduli of the composites can be represented as follows
(refer to Fig. 3(d) and (e)):

(Fig. 3(d)) The compressive modulus parallel to the helix-rein-
forcement dominates when the applied torque is in the CW direc-
tion (Voigt model):

ECW ¼ VAEA þ VBEB ð2Þ

(Fig. 3(e)). The compressive modulus perpendicular to the helix-
reinforcement dominates when the applied torque is in the CCW
direction (Reuss model):

1
ECCW

¼ VA

EA
þ VB

EB
; ð3Þ

where Ei is the compressive elastic modulus and Vi is the volume
fraction of regions A and B, referring to the helix-reinforced and
non-reinforced regions, respectively. As seen in Fig. 3(b)–(e),



Fig. 3. (a) Surface shear stress–strain curves illustrating the torsional behavior of ZrO2–epoxy (60:40) composites twisted in different directions. The green curves correspond
to 42� helix-reinforced composites and the red curve corresponds to a composite without helix-reinforcement. The helix-reinforced composite was nearly twice as rigid in
torsion when twisted in the clockwise (CW) direction, as opposed to the counterclockwise (CCW) direction. (b–c)Schematics of helix-reinforced composites subjected to a
torque (T) rotated: (b) CW and (c) CCW. (d–e) Schematics of a unidirectionally-reinforced plate, illustrative of a stress element at the outer surface of the cylindrical
composites, subjected to pure shear and plane stress when twisted: (d) CW and (e) CCW. The representative stress elements are rotated such that the pure shear stresses
(smax) become pure compressive and tensile stresses (rC and rT, respectively). The letters ‘‘A’’ and ’’B’’ represent the helix-reinforced regions (brown) and non-reinforced
regions (white), respectively. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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depending on the direction of applied torque, the maximum com-
pressive stresses are oriented (a) parallel or (b) perpendicular to
the direction of helix reinforcement. Assuming the increased con-
tent of ZrO2 in the helix-reinforced regions increases the elastic
modulus of these regions (EA), it is concluded that the elastic mod-
ulus of the reinforced region is greater than the non-reinforced
region (EA > EB). Thus, the composite must be stiffer when twisted
in the CW direction, such that ECW > ECCW. Based on the assumption
from Eq. (1), providing that G / E, the shear modulus is significantly
greater when the applied torque induces a maximum compressive
stress parallel to the helix-reinforcement, such that GCW > GCCW. In
conclusion, the experimental observations presented in Fig. 3(a)
agree with the results predicted by this simplified analysis.
Fig. 4. Surface shear stress–strain curves illustrating the torsional behavior of
ZrO2–epoxy (60:40) composites with different angles of helix-reinforcement. The
different curves correspond to the different angles of reinforcement, illustrating
that the shear modulus (slope) increases as the angle of reinforcement approaches
45�, while the shear strength (maximum stress) increases as the angle of
reinforcement approaches 90�. The dashed orange line shows the slope of pure
epoxy subjected to torsion. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)
3.2.2. Angle of helix-reinforcement
In addition to the direction of applied torque, the angle of helix-

reinforcement also affects the torsional properties of the compos-
ites. To verify this, three composites from each set (40:60 and
60:40) with different angles of helix-reinforcement were twisted
in the CW direction. Fig. 4 shows the shear stress–strain curves
for the 60:40 composites with helix-reinforcement angles of 42�,
73�, and 84�. Comparing the slopes (i.e., shear modulus) of the
stress–strain curves, it is obvious that pure epoxy (orange curve
in Fig. 4) has the lowest shear modulus (slope) followed by the
composite without helix-reinforcement (red curve in Fig. 4), while
the 42� composite (green curve in Fig. 4) has the largest shear mod-
ulus (refer to Table 1). Fig. 5(a) contains a plot of the measured
shear modulus (GXY) versus the angle of helix-reinforcement for
both the 40:60 and 60:40 composites. As seen in this plot, it is clear
the optimal angle of helix-reinforcement is at 45�. Analogous to the
trends predicted by Hamed et al. [37] for filament wound compos-
ite tubes, the shear modulus of the 60:40 composites with a rein-
forcement angle of �45� (�6 GPa) is roughly twice that of the
composites with reinforcement angles of 0� and �90� (�3 GPa)
(refer to Fig. 5(a)). Moreover, increasing the volume fraction of
ZrO2 increased the global shear modulus of the composites, as
shown in Fig. 5(a). This is because a larger fraction of ceramic in
the helical region on the outer surface of the composites carries a
greater amount of the induced maximum shear stresses, since
the shear modulus of ZrO2 is �90 GPa [40], nearly 100 times
greater than that of epoxy (�1 GPa).

Again, assuming a state of pure shear and plane stress at the
surface of the cylindrical composites, the results shown in
Fig. 5(a) are confirmed by a modified composite laminate theory,
following Hyer [38] (refer to Appendix A for complete analysis).
Several assumptions were made to simplify the analysis (see
Appendix A). Two orthogonal coordinate systems were chosen
according to the schematic in Fig. 5(b). The local material coordi-
nates (1,2,3) are orthogonal and oriented such that the 1-axis is
parallel to the direction of helix-reinforcement. The global material
coordinates ðX;Y ; ZÞ are orthogonal and oriented such that the
X-axis is in the circumferential direction, the Y-axis is parallel to
the cylindrical axis (ice growth direction), and the Z-axis, equiva-
lent to the 3-axis, is in the radial direction. The angle of helix-
reinforcement (u) is expressed as the angle, rotated about the



Fig. 5. (a) Plot of the experimental average shear modulus versus the angle of helix-reinforcement for the 60:40 composites (dashed green line) and the 40:60 composites
(dotted purple line). The error bars represent the range of data collected for the duplicate samples (n = 2). (b) Schematic of the global ðX;Y ; ZÞ and local (1,2,3) coordinate
systems (upper righthand corner), illustrating the angle of helix-reinforcement (u) and direction of applied shear stress (sXY). The plot shows the theoretical normalized shear
modulus (GXY/G12, Eqs. (4)–(6)) versus helix-reinforcement angle (u), assuming the outer surface of the composites as a unidirectionally-reinforced plate subjected to pure
shear and plane stress. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Z-axis, between the cylindrical axis (Y-axis) and the reinforcement
(1-axis), such that (refer to Fig. 5(b)):

m ¼ cos
p
2
�u

� �
; ð4Þ

n ¼ sin
p
2
�u

� �
: ð5Þ

According to the analysis presented in Appendix A, the normal-
ized shear modulus (GXY/G12) can be expressed in terms of the
angle of helix-reinforcement and the material properties in the
local coordinate system [38]:

GXY=G12 ¼
1

m4 þ n4 þ 2m2n2 2 G12
E1

1þ 2m12ð Þ þ 2 G12
E2
� 1

� � ; ð6Þ

where GXY is the effective shear modulus of the composite in the
XY-plane, G12 and m12 are the shear modulus and Poisson’s ratio
in the 12-plane, respectively, and E1 and E2 are the elastic
moduli of the composite parallel and perpendicular to the helix-
reinforcement, respectively, which can be approximated from
Eqs. (2) and (3), such that E1 / ECW and E2 / ECCW. Fig. 5(b) shows
a plot illustrating how the global shear modulus (GXY) on the outer
surface of the composites varies with respect to the angle of helix-
reinforcement (u), according to Eqs. (4)–(6). This trend was plotted
by ignoring the effect of Poisson’s ratio (m12 = 0) and approximating
the elastic properties in the local coordinate system as follows:
E1 = ECW, E2 = ECCW, and G12 = E2/2 (refer to Eqs. (1)–(3)), where
VA = VB = 0.5 and EA = 10 > EB = 1. As seen in the plot, the maximum
value of the normalized shear modulus (GXY/G12) occurs at an angle
of helix-reinforcement of 45�, in agreement with the experimental
results (Fig. 5(a)).

Another interesting phenomenon observed in Fig. 4 is that
the shear strength of the composites increases as the helix-
reinforcement angle increases. This can be explained by the fact
that brittle materials subjected to torsion fail in the direction of
maximum tension, at 45� to the axis of rotation (refer to Fig. 3(b)
and (c)). Most likely, as the angle of the helix-reinforcement
approaches 90�, the higher-density, helix-reinforced region deflects
or redirects the tensile stresses that occur along the surface of the
cylindrical samples. Accordingly, the composites with helix-
reinforcement angles at 42� have the lowest shear strength because
the helical interface at the Fe3O4-rich and Fe3O4-poor phases is the
weakest point of the structure. When this interface is oriented
perpendicular to the maximum tensile stresses, brittle failure
occurs at the interface, as explained in the following section.
3.3. Fracture behavior

In torsion, brittle materials typically fail along a 45� angle in the
direction of maximum tension (refer to Fig. 3(b) and (c)). Ductile
materials, on the other hand, typically fail in the direction of max-
imum shear, at an angle of 90� to the rotation axis of the applied
torque. Fig. 6(a)–(h) show the fracture surfaces of the ZrO2–epoxy
composites. Accordingly, all of the composites fractured at 45� to
the rotation axis, perpendicular to the induced maximum tensile
stresses (regardless of the twisting direction), suggesting brittle
failure. However, upon closer observation of the crack paths
(Fig. 6(i)–(l)), it appears that some degree of brittle as well as shear
failure occurs in the different composites. Most notably, Fig. 6(j)
and (k) show interesting phenomena. In the 42� helix-reinforced
composites (Fig. 6(j)), failure occurs at the interface between the
helix-reinforced and non-reinforced regions, in the direction of
the induced maximum tensile stress. Therefore, the interface sep-
arating the two phases (i.e., Fe3O4-rich and Fe3O4-poor) must be
the weakest point of the structure in tension. In the 73� and 84�
composites (refer to Fig. 6(k)), the angle of the crack path deviates
across each region. This suggests two modes of failure – brittle fail-
ure and shear failure – clearly observed in Fig. 6(k), and to a lesser
extent in Fig. 6(l). As noted above, the shear strength of the com-
posites increases as the angle of helix-reinforcement increases
beyond 45�. Because the maximum tensile stresses induced by tor-
sion are oriented at 45�, characteristic brittle failure seems to occur
at the more stiff, but brittle, helix-reinforced (Fe3O4-rich) regions,
while some instances of shear failure are observed across the
non-reinforced regions (see Fig. 6(k)). A possible explanation for
this observed crack deflection is that brittle tensile failure in the
reinforced regions occurs first and initiates post shear failure in
the non-reinforced regions, bridging the crack. This type of crack
deflection is commonly observed in a variety of natural materials,
such as bone and nacre [41], leading to enhanced strength and
toughness.

The modes of failure observed result from mechanisms originat-
ing at the microstructural level (Fig. 7). Tensile stresses cause
delamination of the epoxy from the ZrO2 as shown in Fig. 7(a).
The debonding of the two phases concentrates local stresses
through the ceramic walls, no longer allowing the epoxy to dissi-
pate energy that accumulates between adjacent lamellae. The more
prominent mode of failure observed in the composites is brittle
fracture. Following delamination, the ceramic walls may be sub-
jected to tensile or compressive stresses (depending on lamellae



Fig. 6. (Top) Images of the fracture surfaces of ZrO2–epoxy composites loaded in torsion: (a–d) 40:60 composites; (e–h) 60:40 composites; (a, e) no magnetic field; (b, f) 42�
helix-reinforcement; (c, g) 73� helix-reinforcement; (d, h) 84� helix-reinforcement. All scale bars are 5 mm. (Bottom) Representative images of the crack path and different
failure mechanisms (yellow) due to the torsional loading of ZrO2–epoxy (40:60) composites with different angles of helix-reinforcement: (i) no magnetic field; (j) 42�; (k) 73�;
(l) 84�. Images of the cylindrical composites (left) show the direction of applied torque (red arrows) and magnified regions of interest (black boxes). All scale bars are 500 lm.
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 7. Fracture surfaces of the ZrO2–epoxy composites, illustrating the two modes
of failure: (a) delamination of the epoxy from the ZrO2; (b) crumbling of the ZrO2

lamellar walls due to brittle failure.
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orientation and loading direction). In the direction of tensile load-
ing, the lamellae exhibit brittle tensile fracture, while in the direc-
tion of compressive loading the lamellae buckle. Fig. 7(b) shows a
lamellar wall of ZrO2 that has collapsed and crumbled due to brittle
failure. In freeze cast ceramics, it is known that lamellar walls fail by
local Euler buckling when subjected to compressive loading [42].
Therefore, after delamination, in the direction of maximum
compressive stress, the ZrO2 lamellae may buckle and collapse in
a similar manner to that shown in Fig. 7(b). On the other hand,
cracks that resemble shear failure (refer to Fig. 6(k)) are caused
by interlamellar shearing, which promotes crack propagation
through the delaminated ceramic walls as they slide past each
other. In conclusion, following delamination due to tensile stresses
(Fig. 7(a)), the brittle fracture behavior observed in the helix-
reinforced composites (Fig. 7(b)) is governed by two mechanisms
occurring in the ceramic phase at the microstructural level:
(1) brittle fracture due to tensile or compressive loading of the
lamellae and (2) interlamellar shearing of adjacent lamellae.
4. Conclusions

Helix-reinforced ZrO2–epoxy composites fabricated by mag-
netic freeze casting and subsequent polymer (epoxy) infiltration
exhibited exceptional torsional properties. Magnetic fields rotated
at different speeds about the ice growth direction were applied to a
freeze casting process to steer the magnetic nanoparticles during
solidification. The composite materials had hierarchical architec-
tures, with helices composed of higher-density ceramic regions
oriented at different angles. Larger volume fractions of the ceramic
phase (from�40 vol.% to �60 vol.%) nearly doubled the shear mod-
ulus of the composites. The helix-reinforced structures oriented at
�45� to the axis of applied torque provided the greatest torsional
rigidity when twisted in the clockwise direction, such that the
induced maximum compressive stresses propagated parallel to
the helix-reinforcement. All of the materials exhibited brittle frac-
ture, primarily governed by three failure mechanisms: delamina-
tion of the epoxy from the ZrO2, brittle fracture of ZrO2 lamellae,
and interlamellar shearing of adjacent lamellae.

Hybrid composites with hierarchical architectures are promis-
ing structural materials for a variety of potential applications
[32]. Introducing helix-reinforced structures, as an additional level
of hierarchy, may prove beneficial for applications requiring
enhanced torsional rigidity. Such applications may include cylin-
drical shafts used in torque converters for combustion engines
and electric motors, sports equipment such as golf clubs or tennis
racquets, and axles for wheeled vehicles. Other, less obvious tech-
nologies may also benefit from helix-reinforced structures. Freeze
cast materials have been proposed as bone implants, having com-
pressive strengths and stiffnesses that nearly match those of natu-
ral bone [29,43]. For the practical use of these materials as bone
replacements, it becomes necessary to optimize all their mechani-
cal properties, including the torsional rigidity. The method of mag-
netic freeze casting introduced here is an efficient means to
accomplish this goal.
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Appendix A

A.1. Torsion testing and calibration

The ZrO2–epoxy composites were tested in torsion using a cus-
tom built torsion testing device (Fig. A1). The device was attached
to the crossheads of a uniaxial Instron materials testing machine
(Instron 3367, Norwood, MA) and converts the applied linear dis-
placement of the crosshead to a rotational displacement through
a rack and pinion (SR5-500 and SS5-40, Quality Transmission Com-
ponents, Garden City Park, NY). The rack, attached to the upper
crosshead, moves linearly with a tensile (or compressive) load (F)
and displacement (d), recorded as a force and displacement by
the data acquisition software (Bluehill 2, Instron, Norwood, MA).
The linear motion of the rack turns the pinion, converting the
applied linear motion to an applied torque (T) and angle of twist
(/), such that:

T ¼ FR cos h; ðA1Þ

/ ¼ d
R
; ðA2Þ

where R is the pinion radius (100 mm) and h is the pitch angle of the
gear teeth (20�).

To convert the torque-rotation data to shear stress–strain data,
an empirical calibration constant (C = 8.82 � 10�4) and the shear
modulus of the epoxy grips (Gg = 1.0 GPa) were determined. There-
fore, to properly calibrate the torsion testing device, a series of six
aluminum (Al 6061-T6) samples with a known shear strength
(207 MPa), shear modulus (26 GPa), lengths of approximately
40 mm and varying diameters (6 mm, 9 mm, 12 mm) were twisted
in the device. The torque-rotation data collected for the aluminum
samples of circular cross-section was converted to shear stress–
strain data [44,45]:

ss ¼
Tcs

Js
; ðA3Þ

cs ¼
/scs

Ls
; ðA4Þ
Fig. A1. (a) Torsion testing device, showing the rack and pinion connected to the
Instron materials testing machine (right, Instron 3367, Norwood, MA) and a typical
torsion sample showing the conversion of force and displacement ðF;dÞ to torque
and rotation (T,/).
where ss is the surface (or maximum) shear stress, cs is the surface
(or maximum) shear strain, cs is the radial distance to the outer
most surface of the composite, which in this case is equal to the
sample radius (cs = rs), Ls is the sample length, and Js is equal to
the polar moment of inertia for a shaft of circular cross-section:
Js ¼ p

2 r4
s . Considering a shaft of square cross-section, however, the

maximum shear stress occurs at the point on the surface closest
to the center of the shaft, such that Eq. (A3) becomes [44–46]:

ss ¼
4:81T

b3 ; ðA5Þ

where b is the full width of the square cross-section. Similarly, the
cross-sections of other noncircular shafts do not remain plane, but
warp or bulge, when twisted about their central axis, leading to dif-
ferent geometric effects [44,45]. For a more comprehensive analysis
of the shear stress–strain response of noncircular shafts subjected
to torsion, refer to [46–49]. Regardless, in this study all samples
of interest twisted in the torsion testing device were cylindrical
shafts of uniform circular cross-section; thus, Eq. (A5) can be
ignored.

Now, assuming that the total angle of twist (/) is the sum of the
angles of twist for all of the components subjected to a torque (T)
(refer to Fig. A1) [44,45]:

/ ¼
X

i

/i ¼ /s þ 2/g þ /c1 þ /c2; ðA6Þ

the angle of twist of each component can be calculated as [44,45]:

/i ¼
TLi

KiGi
; ðA7Þ

where /i is angle of twist, Li is the length, Gi is the shear modulus,
and Ki is the warping rigidity factor of component i – referring to
the sample of interest (s), the square grips (g), and the device
mounts (c1 and c2), according to Fig. A1. The warping rigidity factor
(Ki) depends on the geometry of the cross-section of each compo-
nent. For the samples of interest, which in this study are all cylindri-
cal shafts of uniform circular cross-section, the warping rigidity
factor is equal to the polar moment of inertia [44,45]:

Ks ¼ Js ¼
p
2

r4
s : ðA8Þ

For the square grips, the warping rigidity factor is [44–46]:

Kg ¼ 0:1406 b4
; ðA9Þ

where the full width of the square grips is b (�25 mm). Assuming
that the geometry and compliance of all the components of the tor-
sion testing device (e.g., mounts) are constant, /c1 and /c2 can be
combined into a single constant value, such that Eq. (A6) can be
rewritten as:

/ ¼ T
Ls

JsGs
þ 2

Lg

KgGg
þ C

� �
; ðA10Þ

where

C ¼ Lc1

Kc1Gc1
þ Lc2

Kc2Gc2
: ðA11Þ

Next, Eq. (A10) is differentiated with respect to the torque to
determine the shear modulus of the sample (Gs) with respect to
the slope of the stress–strain curve (@//@T) and the calibration con-
stant (C):

@/
@T
¼ @

@T
T

Ls

JsGs
þ 2

Lg

KgGg
þ C

� �� �
: ðA12Þ

Then, setting Gg = Gs because the sample grips and the region of
interest of the aluminum samples are composed of the same mate-
rial, Eq. (A12) can be rewritten as:



Fig. A2. Shear stress–strain curves: (a) aluminum (Al 6061-T6) samples used to determine the calibration constant (C = 8.82 � 10�4); (b) epoxy samples used to determine
the shear modulus of the epoxy grips (Gg = 1.0 GPa). The insets show representative images of the dumbbell shaped samples.
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Gs ¼
Ls
Js
þ 2 Lg

Kg

@/
@T � C

; ðA13Þ

where @//@T is the inverse of the slope of the linear regime of the
torque-rotation curve, the values Ls, Lg, Js, and Kg are all measurable
parameters that describe the geometry of the sample, and C is a cal-
ibration constant that accounts for the geometry and stiffness of the
torsion testing device. Therefore, the ultimate shear stress and
shear strain can be plotted using Eqs. (A3) and (A4), where:

cs ¼ rs; ðA14Þ

/s ¼ /� T 2
Lg

KgGg
þ C

� �� �
: ðA15Þ

Fig. A2(a) shows a plot of the calculated stress–strain curves of
the six aluminum samples, using the empirically derived calibra-
tion constant:

C ¼ 8:82� 10�4:

As seen in the plot (Fig. A2(a)), the measured shear strength and
modulus of aluminum samples are nearly equal to their known
values.

Next, to determine the torsional properties of the epoxy used as
grips when testing the composites, pure epoxy samples were fab-
ricated and tested. A two part epoxy resin (EpoxiCure Resin, Bueh-
ler, Lake Bluff, IL) was degassed under low vacuum and poured into
3D printed molds to form dumbbell shaped samples, like that
shown in Fig. A2(b). Six epoxy samples with lengths of approxi-
mately 40 mm and varying diameters (6 mm, 9 mm, 12 mm) were
tested in torsion. Fig. A2(b) shows the shear stress–strain curves of
the epoxy samples, using the above calibration constant. The shear
strength and modulus of the epoxy were determined from the plot
to be �48 MPa and �1.0 GPa, respectively.

Finally, using the empirically derived calibration constant
(C = 8.82 � 10�4) and the shear modulus of the epoxy grips
(Gg = 1.0 GPa), the ultimate surface shear stress and shear strain
of the cylindrical ZrO2–epoxy composites of circular cross-section
can be plotted from the experimental data using Eqs. (A3), (A4),
(A14) and (A15). Accordingly, the composite maximum shear
strength (smax) and shear modulus (Gs) of the ZrO2–epoxy compos-
ites can be calculated as follows:

smax ¼
Trs

Js
; ðA16Þ

Gs ¼
Ls=Js

@/
@T � 2 Lg

Kg Gg
� C

: ðA17Þ
A.2. Angle of helix-reinforcement analysis

Referring to Section 3.2.2 and Fig. 5(b), the global elastic moduli
(EX,EY) and shear modulus (GXY) of the composites can be predicted
analytically, as a function of the angle of helix-reinforcement (u).
Assuming the outer surface of the cylindrical composites is a uni-
directionally-reinforced plate subjected to a state of pure shear
and plane stress, as illustrated in Fig. 5(b), the stresses on the plate
may be reduced as follows:

rX ¼ rY ¼ rZ ¼ sXZ ¼ sYZ ¼ 0 ðA18Þ

and

r3 ¼ s23 ¼ s13 ¼ 0: ðA19Þ

However, it is important to note that, with the assumption of
plane stress, the out-of-plane normal strain is not negligible
(e3 – 0), while the out-of-plane shear strains are reduce to zero
(c23 = c13 = 0) [38]. Now, the stresses and strains in the local coor-
dinate system (1,2,3) can be expressed in terms of the global coor-
dinate system ðX;Y; ZÞ, using the transformation matrix [38]:

½T� ¼
m2 n2 2mn

n2 m2 �2mn

�mn mn m2 � n2

2
64

3
75; ðA20Þ

where m ¼ cos p
2 �u
� 	

and n ¼ sin p
2 �u
� 	

, such that:

r1

r2

s12

0
B@

1
CA ¼ ½T�

rX

rY

sXY

0
B@

1
CA ðA21Þ

and

e1

e2
1
2 c12

0
B@

1
CA ¼ ½T�

eX

eY

1
2 cXY

0
B@

1
CA; ðA22Þ

where ri and sij are the normal and shear stresses, and ei and cij are
the normal and shear strains in the (1,2,3) and ðX;Y; ZÞ directions,
respectively. The relationship between the stresses and strains in
the local coordinate system (1,2,3) can be expressed by the reduced
compliance matrix [S] [38]:

e1

e2
1
2 c12

0
B@

1
CA ¼

S11 S12 0
S12 S22 0
0 0 1

2 S66

2
64

3
75

r1

r2

s12

0
B@

1
CA; ðA23Þ
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where

S11 ¼
1
E1

;

S12 ¼ �
m12

E1
¼ � m21

E2
;

S22 ¼
1
E2

;

S66 ¼
1

G12

ðA24Þ

and mij is Poisson’s ratio, Ei is the elastic modulus, and Gij is the shear
modulus in the (1,2,3) directions, respectively. However, it is neces-
sary to express the global material properties, namely the elastic
moduli (EX,EY) and shear modulus (GXY), as functions of the angle
of helix-reinforcement (u) to determine how this angle influences
the overall strength and stiffness of the composites subjected to
an applied torque. Thus, combining Eqs. (A20)–(A23) yields:

eX

eY

1
2 cXY

0
B@

1
CA ¼ ½T��1

S11 S12 0
S12 S22 0
0 0 1

2 S66

2
64

3
75½T�

rX

rY

sXY

0
B@

1
CA; ðA25Þ

which can be rewritten as the transformed reduced compliance
matrix S

h i
[38]:

eX

eY

cXY

0
B@

1
CA ¼

S11 S12 S16

S12 S22 S26

S16 S26 S66

2
64

3
75

rX

rY

sXY

0
B@

1
CA; ðA26Þ

where

S11 ¼ S11m4 þ 2S12 þ S66ð Þm2n2 þ S22n4;

S12 ¼ S11 þ S22 � S66ð Þm2n2 þ S12 n4 þm4
� 	

;

S16 ¼ 2S11 � 2S12 � S66ð Þm3n� 2S22 � 2S12 � S66ð Þmn3;

S22 ¼ S11n4 þ 2S12 þ S66ð Þm2n2 þ S22m4;

S26 ¼ 2S11 � 2S12 � S66ð Þmn3 � 2S22 � 2S12 � S66ð Þm3n;

S66 ¼ 2 2S11 þ 2S22 � 4S12 � S66ð Þm2n2 þ S66 n4 þm4� 	
:

ðA27Þ

By analogy (refer to Eqs. (A23) and (A24)), the elastic moduli
(EX,EY) and shear modulus (GXY) in the global coordinate system
can be expressed in terms of the transformed reduced compliance
matrix S

h i
[38]:

EX ¼
1

S11
¼ E1

m4 þm2n2 E1
G12
� 2m12

� �
þ n4 E1

E2

; ðA28Þ

EY ¼
1

S22
¼ E2

m4 þm2n2 E2
G12
� 2m21

� �
þ n4 E2

E1

; ðA29Þ

GXY ¼
1

S66
¼ G12

m4 þ n4 þ 2m2n2 2 G12
E1

1þ 2m12ð Þ þ 2 G12
E2
� 1

� � : ðA30Þ

Finally, dividing Eq. (A30) by the local material shear modulus (G12)
yields the normalized shear modulus shown in Eq. (6) and plotted
in Fig. 5(b):

GXY=G12 ¼
1

m4 þ n4 þ 2m2n2 2 G12
E1

1þ 2m12ð Þ þ 2 G12
E2
� 1

� � : ðA31Þ
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